On the 3-extendability of quaternary linear codes

著者

<table>
<thead>
<tr>
<th>著者名</th>
<th>Kanda Hitoshi, Maruta Tatsuya</th>
</tr>
</thead>
<tbody>
<tr>
<td>出典</td>
<td>Finite Fields and Their Applications</td>
</tr>
<tr>
<td>卷</td>
<td>52</td>
</tr>
<tr>
<td>発行年</td>
<td>2018-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10466/16028</td>
</tr>
</tbody>
</table>
On the 3-extendability of quaternary linear codes

H. Kanda*, T. Maruta*1,*

*Department of Mathematics and Information Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan

Abstract

We consider the extendability of linear codes over \(\mathbb{F}_4 \), the field of order four. Let \(C \) be \([n, k, d]_4\) code with \(d \equiv 1 \pmod{4} \), \(k \geq 3 \). The weight spectrum modulo 4 (4-WS) of \(C \) is defined as the ordered 4-tuple \((w_0, w_1, w_2, w_3)\) with

\[w_0 = \frac{1}{3} \sum_{i > 0} A_i, \quad w_j = \frac{1}{3} \sum_{i \equiv j \pmod{4}} A_i \]

for \(j = 1, 2, 3 \). We prove that \(C \) is 3-extendable if \(w_0 + w_2 = k_2 \) and if either (a) \(w_1 < 4^{k_2} + 4 - \theta_{k_3} \); (b) \(w_1 > 10 \cdot 4^{k_3} - \theta_{k_3} \) or (c) \((w_0, w_1) = (\theta_{k_3}, 6 \cdot 4^{k_3}) \). We also give a sufficient condition for the l-extendability of \([n, k, d]_4\) codes with \(d \equiv 4 - l \pmod{4} \), \(k \geq 3 \) for \(l = 1, 2, 3 \) when \(w_0 + w_2 = \theta_{k_2} + 2 \cdot 4^{k_2} \).

MSC: 51E20; 94B27

Keywords: linear codes, extension, finite projective spaces, odd sets

1. Introduction

Let \(\mathbb{F}_q \) denote the field of \(q \) elements. We denote by \(\mathbb{F}_q^n \) the set of \(n \)-tuples over \(\mathbb{F}_q \). The weight of a vector \(c \in \mathbb{F}_q^n \), denoted by \(wt(c) \), is the number of nonzero entries in \(c \). An \([n, k, d]_q\) code or a \(q \)-ary linear code of length \(n \) with dimension \(k \) and minimum weight \(d \) is a \(k \)-dimensional subspace of \(\mathbb{F}_q^n \) whose minimum weight of nonzero codewords is \(d \). The weight distribution of \(C \) is the list of numbers \(A_i \) which is the number of codewords of \(C \) with weight \(i \). The weight distribution with \((A_0, A_d, \ldots) = (1, \alpha, \ldots)\) is also expressed as \(0^d \cdot 1 \cdot \ldots \).

For an \([n, k, d]_q\) code \(C \) with generator matrix \(G \), \(C \) is called \(l \)-extendable if there exist \(l \) vectors \(h_1, \ldots, h_l \in \mathbb{F}_q^k \) such that the extended matrix \([G, h_1^T \cdots h_l^T]\) generates an \([n + l, k, d + l]_q\) code \(C' \), and \(C' \) is an \(l \)-extension of \(C \). Especially when \(l = 1 \), \(C \) is simply called extendable and \(C' \) is an extension of \(C \). In this paper, we deal with the extendability of quaternary linear codes. Extension theorems are employed to find optimal linear codes to construct new codes from...
old ones or to prove the nonexistence of codes with certain parameters; see [8, 15] for ternary linear codes and [2, 11] for linear codes over \mathbb{F}_q. The t-extendability of $[n,k,d]_4$ codes was investigated in [9, 12] for $t = 1$ when d is odd and in [5, 13, 14, 16] for other cases.

Let \mathcal{C} be an $[n,k,d]_q$ code with $d \not\equiv 0 \pmod{q}$. We define the weight spectrum modulo q (q-WS) as the q-tuple (w_0,w_1,\ldots,w_{q-1}) with

$$ w_0 = \frac{1}{q} \sum_{i>0} A_i, \quad w_j = \frac{1}{q} \sum_{i \equiv j \pmod{q}} A_i $$

From now on in this section, let $q = 4$. Denote by θ_j the number of points in $\text{PG}(j,4)$, i.e., $\theta_j = (4^{j+1} - 1)/3$. We set $\theta_0 = 1$ and $\theta_j = 0$ for $j < 0$ for convenience.

As for the known extension theorems for linear codes over \mathbb{F}_4, see [5, 14] for the case when $d \equiv 2 \pmod{4}$ and [5, 7, 9, 12] for the case when $d \equiv 3 \pmod{4}$. In this paper, we mainly consider the case when $d \equiv 1 \pmod{4}$. The following result is already known for such a case.

Theorem 1.1 ([5]). Let \mathcal{C} be an $[n,k,d]_4$ code with 4-WS (w_0,\ldots,w_3), $k \geq 3$, $d \equiv 1 \pmod{4}$. Then \mathcal{C} is 3-extendable if one of the following conditions holds:

(a) $w_0 = \theta_{k-4}$,

(b) $w_0 = \theta_{k-3}$ and $w_2 = 3 \cdot 4^{k-2}$,

(c) $w_j = 0$ for $j = 2$ or 3.

The aim of this paper is to give some new sufficient conditions for the 3-extendability of $[n,k,d]_4$ codes with $d \equiv 1 \pmod{4}$. We consider the cases $w_0 + w_2 = \theta_{k-2}$ or $\theta_{k-2} + 2 \cdot 4^{k-2}$. The following four theorems are our main results.

Theorem 1.2. Let \mathcal{C} be an $[n,k,d]_4$ code with 4-WS (w_0,\ldots,w_3) with $w_0 + w_2 = \theta_{k-2}$, $k \geq 3$, $d \equiv 1 \pmod{4}$. Then \mathcal{C} is 3-extendable if either

(a) $w_1 - w_0 < 4^{k-2} + 4 - \theta_{k-3}$ or

(b) $w_1 - w_0 > 10 \cdot 4^{k-3} - \theta_{k-3}$.

Whilst one can not apply Theorem 1.2 when $w_1 - w_0 = 6 \cdot 4^{k-3} - \theta_{k-3}$, we prove the following.

Theorem 1.3. Let \mathcal{C} be an $[n,k,d]_4$ code with $d \equiv 1 \pmod{4}$, $k \geq 3$, and 4-WS $(\theta_{k-3},6 \cdot 4^{k-3},4^{k-2},4^{k-1} - 6 \cdot 4^{k-3})$. Then \mathcal{C} is 3-extendable.

For two integers s and t with $s > t$, the set of s vectors $v_1,\ldots,v_s \in \mathbb{F}_4^k$ are called t-independent if any t of which are linearly independent over \mathbb{F}_4.

Theorem 1.4. Let \mathcal{C} be an $[n,k,d]_4$ code with 4-WS (w_0,\ldots,w_3) with $w_0 + w_2 = \theta_{k-2} + 2 \cdot 4^{k-2}$, $k \geq 3$, $d \not\equiv 0 \pmod{4}$ and let G be a generator matrix of \mathcal{C}. Then there exist three 2-independent vectors $a_0,a_1,a_2 \in \mathbb{F}_4^k$ such that the codeword bG has even weight for any vector $b \in \mathbb{F}_4^k$ which is orthogonal to one of a_0,a_1,a_2.
Theorem 1.5. Let C and $a_0, a_1, a_2 \in \mathbb{F}_4^k$ be as in Theorem 1.4 and let

$$\mu_i = \frac{1}{3} | \{ b \in \mathbb{F}_4^k \setminus \{(0, \ldots, 0)\} \mid wt(bG) \equiv 2 \pmod{4}, b \perp a_i \} |$$

for $i = 0, 1, 2$. If $\mu_0 + \mu_1 + \mu_2 = w_2$, then C is extendable by adding one of a_0, a_1, \ldots, a_4 to G as a column, where a_4 and a_5 are linearly independent vectors in \mathbb{F}_4^k such that a_1, a_2, \ldots, a_5 give a line in $PG(k-1, 4)$. More precisely,

(a) C is 3-extendable by adding a_0, a_1, a_2 as columns to G if $d \equiv 1 \pmod{4}$;

(b) C is 2-extendable by adding a_3 and a_4 as columns to G if $d \equiv 2 \pmod{4}$;

(c) C is extendable by adding one of a_0, a_1, a_2 as a column to G if $d \equiv 3 \pmod{4}$.

We give some examples of quaternary linear codes below to which our results can be applied. Let $\mathbb{F}_4 = \{0, 1, \omega, \bar{\omega}\}$, where ω and $\bar{\omega}$ are the roots of $x^2 + x + 1 \in \mathbb{F}_2[x]$. We denote ω and $\bar{\omega}$ by 2 and 3, respectively, for simplicity.

Example 1.6. Let C_1 be the $[14, 3, 9]_4$ code with generator matrix

$$G_1 = \begin{bmatrix}
1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 2 & 3 & 3 & 3 & 3 & 3 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 3 & 0 & 3 & 0 & 2 & 3 & 3 & 0 & 2 & 1 & 1 & 1 & 1
\end{bmatrix}.$$

Then, C_1 has weight distribution $0^1 9^{18} 10^6 11^{24} 12^9 13^6$ with 4-WS (3, 8, 2, 8). C_1 is 3-extendable by Theorem 1.2 with condition (a). Actually, we get a $[17, 3, 12]_4$ code with weight distribution $0^4 12^{39} 14^{13} 16^6$ by adding the columns (1, 0, 2)T, (1, 1, 2)T and (1, 1, 2)T to G_1.

Example 1.7. Let C_2 be the $[27, 5, 17]_4$ code with generator matrix

$$G_2 = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 3 & 3 & 3 & 0 & 2 & 2 & 3 & 1 & 1 & 1 & 3 & 3 & 0 & 1 & 3 & 0 & 0 & 0 & 1 & 2 & 3 & 3 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 2 & 2 & 3 & 1 & 0 & 0 & 1 & 3 & 3 & 0 & 0 & 1 & 0 & 2 & 0 & 2 & 1 & 3 & 3 & 2 & 3 \\
0 & 0 & 0 & 0 & 1 & 2 & 1 & 3 & 2 & 1 & 2 & 1 & 1 & 1 & 0 & 3 & 0 & 3 & 1 & 0 & 2 & 2 & 3 & 2 & 0 & 3 & 3 & 0 & 1 & 1
\end{bmatrix}.$$

Then, C_2 has weight distribution

$$0^1 17^{156} 18^{96} 19^{135} 20^{54} 21^{37} 22^{96} 23^{54} 24^{9} 25^{48} 26^{6} 27^3$$

giving 4-WS (21, 192, 64, 64), and is 3-extendable by Theorem 1.2 with condition (b). Adding the columns (1, 1, 2, 0, 3)T, (1, 2, 0, 1, 0)T and (1, 2, 0, 1, 0)T to G_2, we get an optimal $[30, 5, 20]_4$ code with weight distribution $0^1 20^{435} 24^{531} 28^{57}$.

Example 1.8. Let C_3 be the $[22, 4, 9]_4$ code with generator matrix

$$G_3 = \begin{bmatrix}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 3 & 3 & 0 & 2 & 0 & 2 & 1 & 3 & 0 & 2 & 1 & 1 & 1 & 2 & 1 & 3 & 1 & 3 & 1 & 1 & 2 & 0 & 1 & 1 & 1
\end{bmatrix}.$$

3
Then, C_3 has weight distribution
\[0^1 9^3 11^3 13^6 14^2 15^6 16^{15} 17^{63} 18^{36} 19^{51}\]
with 4-WS (5, 24, 16, 40). Hence C_4 is 3-extendable by Theorem 1.3. We get a
$[25, 4, 12]_4$ code with weight distribution $0^3 12^1 14^3 16^5 18^2 20^1 22^3 27$ by adding
the columns $(1, 0, 1, 3)^T$, $(0, 1, 1, 1)^T$ and $(0, 1, 1, 1)^T$ to G_3.

Example 1.9. Let C_4 be the $[24, 3, 17]_4$ code with generator matrix
\[
G_4 = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
0 & 0 & 1 & 1 & 1 & 2 & 3 & 3 & 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 0 \end{bmatrix}.
\]

Then, C_3 has weight distribution $0^1 7^1 8^1 22^1 18^1 19^1 20^1$ giving 4-WS (5, 6, 8, 2), and
one can find $a_0 = (1, 0, 1)$, $a_1 = (1, 0, 2)$, $a_2 = (1, 0, 3)$ as in Theorem 1.4. Since
$\mu_0 = \mu_1 = 2$ and $\mu_2 = 4$, C_3 is 3-extendable by Theorem 1.5. Actually, we
construct an optimal $[27, 3, 20]_4$ code with weight distribution $0^3 20^{15} 22^{18}
$ by adding a_0, a_1, a_2 to G_4 as columns.

2. Geometric approach

For an integer $k \geq 3$, let $\Sigma = \text{PG}(k - 1, q)$ be the projective geometry
of dimension $k - 1$ over \mathbb{F}_q. A j-flat is a projective subspace of dimension j in Σ.
The 0-flats, 1-flats, 2-flats, 3-flats, $(k - 3)$-flats and $(k - 2)$-flats in Σ are called
points, lines, planes, solids, secundum and hyperplanes, respectively. We refer
to [3] and [4] for geometric terminologies. For $j < 0$, a j-flat is the empty set
as the usual convention. We investigate linear codes over \mathbb{F}_q through projective
gometry.

Let C be an $[n, k, d]_q$ code with a generator matrix G and let g_i be the i-th
row of G ($1 \leq i \leq k$). For $P = (p_1, \ldots, p_k) \in \Sigma$, the weight of P with respect
to G, denoted by $w_G(P)$, is defined as
\[w_G(P) = \text{wt}\left(\sum_{i=1}^{k} p_i g_i\right)\].

For a t-flat Δ in Σ, $w_G(\Delta)$ is defined as $w_G(\Delta) = \sum_{P \in \Delta} w_G(P)$. Let
\[F_d = \{P \in \Sigma \mid w_G(P) = d\}.
\]
Recall that a hyperplane H of Σ is defined by a non-zero vector $h = (h_1, \ldots, h_k) \in
\mathbb{F}_q^k$ as $H = \{P(p_1, \ldots, p_k) \in \Sigma \mid h_1 p_1 + \cdots + h_k p_k = 0\}$. h is called the defining
vector of H. The following lemma is well-known, see [10, 11].

Lemma 2.1. An $[n, k, d]_q$ code C is extendable if and only if there exists a
hyperplane H of Σ such that $F_d \cap H = \emptyset$. Moreover, the extended matrix of G
by adding the defining vector of H as a column generates an extension of C.
Now, let C be an $[n,k,d]_q$ code with q-WS $(w_0, w_1, \ldots, w_{q-1})$ and assume $d \not\equiv 0 \pmod{q}$. Let

$$M_i = \{ P \in \Sigma \mid w_G(P) \equiv i \pmod{q} \},$$

$$F = \Sigma \setminus \overline{M_d}.$$

Then we have $w_i = |M_i|$ for $0 \leq i \leq q-1$. Note that $F_d \cap M_0 = \emptyset$ and $F_d \subset M_d$. As a corollary of Lemma 2.1, we get the following.

Corollary 2.2. C is extendable if there exists a hyperplane H of Σ such that $H \subset F$.

We consider the extendability of C from this geometrical point of view. For a line $L = \{P_0, P_1, \ldots, P_q\}$ in Σ, the weight of L is naturally defined by $w_G(L) = \sum_{i=0}^{q} w_G(P_i)$, which satisfies

$$w_G(L) \equiv 0 \pmod{q},$$

(2.1)

see [16]. The line condition (2.1) determines all possible lines in Σ.

From now on, we only consider the case when $q = 4$. A t-flat Π of Σ with $|\Pi \cap M_0| = h$, $|\Pi \cap M_1| = i$, $|\Pi \cap M_2| = j$ is called an $(h,i,j)_t$-flat. An $(h,i,j)_1$-flat is called an (h,i,j)-line. An (h,i,j)-plane, an (h,i,j)-solid and so on are defined similarly. Let A_i be the set of all possible (h,i,j) such that an $(h,i,j)_t$-flat exists. Then, it follows from (2.1) that

$$A_1 = \{(0,1,1), (0,3,1), (1,0,0), (1,2,0), (1,4,0), (0,0,3), (0,2,3), (1,1,2), (2,0,1), (2,2,1), (3,1,0), (3,0,2), (1,0,4)\}. \quad (2.2)$$

So, Tables 3.1-3.4 in [12] (the list of all possible (h,i,j)-planes with lines for the case d is odd) are also valid for the case $d \equiv 2 \pmod{4}$. Let M_ϵ be the set of points with even weight, i.e.,

$$M_\epsilon = M_0 \cup M_2.$$

If a line L meets M_ϵ in exactly i points, L is called an i-line. From (2.2), there exist only 1-lines, 3-lines or 5-lines of M_ϵ. Such a set in Σ is called an odd set or a set of odd type [3]. Thus, the set M_ϵ forms an odd set in Σ. Moreover, a 5-line meets M_0 in some odd number of points. This yields the following.

Lemma 2.3. The set M_0 forms an odd set in M_ϵ if M_ϵ is a flat in Σ.

The following three lemmas are needed to prove Theorem 1.2.

Lemma 2.4 ([14]). An odd set K in $PG(r,4)$ contains a hyperplane of $PG(r,4)$ for $r \geq 2$ if $|K| < \theta_{r-1} + 2 \cdot 4^{r-2}$ or $|K| > \theta_{r-1} + 2 \cdot 4^{r-1} - 4$.

A set B in $PG(r,q)$ is called a blocking set with respect to s-flats if every s-flat in $PG(r,q)$ meets B in at least one point.
Lemma 2.5 ([1]). Let \mathcal{B} be a blocking set with respect to s-flats in $PG(r,q)$. Then, $|\mathcal{B}| \geq \theta_{r-s}$, where the equality holds if and only if \mathcal{B} is an $(r-s)$-flat.

Lemma 2.6 ([5]). Let C be an $[n,k,d]_4$ code with generator matrix G, $k \geq 3$, $d \equiv 2$ (mod 4). If $M_0 \cup M_1$ contains a hyperplane H of Σ, then C is 2-extendable by adding the defining vector of H twice to G.

Proof of Theorem 1.2. Let C be an $[n,k,d]_4$ code with generator matrix G with $w_0+w_2 = \theta_{k-2}$, $k \geq 3$, $d \equiv 1$ (mod 4) satisfying $w_1-w_0 < 4^{k-2}+4-\theta_{k-3}$ or $w_1-w_0 > 10 \cdot 4^{k-3}-\theta_{k-3}$. Since M_e is an odd set, M_e is a blocking set with respect to lines. Since $|M_e| = \theta_{k-2}$, M_e forms a hyperplane of Σ, say H_1, by Lemma 2.5. Let \hat{C} be an extended $[n+1,k,d+1]_4$ code with generator matrix G, which is given by adding the defining vector of H_1 to G and let

$$M_i = \{P \in \Sigma \mid w_G(P) \equiv i \pmod{q}\}.$$

Since $w_G(P) = w_G(P)$ for $P \in H_1$ and $w_G(P) = w_G(P)+1$ for $P \not\in H_1$, we have $\Sigma = M_0 \cup M_2$, $M_0 = M_0 \cup M_3$ and $M_2 = M_1 \cup M_2$. Hence, from Lemma 2.3, $M_0 \cup M_3$ is an odd set. It follows from Lemma 2.4 that M_0 contains a hyperplane, say H_2, if $w_0+w_3 < \theta_{k-2}+2\cdot 4^{k-3}$ or $w_0+w_3 > \theta_{k-2}+2\cdot 4^{k-2}-4$, which holds from the condition $w_1-w_0 < 4^{k-2}+4-\theta_{k-3}$ or $w_1-w_0 > 10 \cdot 4^{k-3}-\theta_{k-3}$. Hence, \hat{C} is 2-extendable by adding the defining vector of H_2 twice to G by Lemma 2.6.

To prove Theorem 1.3, we need the following six lemmas.

Lemma 2.7. Let Π be a $(\theta_{t-1}, \varphi_1, 0)_t$ flat in Σ for $t \geq 2$. If $\varphi_1 > 0$, then $\varphi_1 \geq 6 \cdot 4^{t-2}$.

Proof. We proceed by induction on t. See Table 3.2 in [12] for $t = 2$. Assume $t \geq 3$. Let Δ_0 be $\Pi \cap M_0$. Since Δ_0 is an odd set in Π, it follows from $|\Delta_0| = \theta_{t-1}$ that Δ_0 is a hyperplane of Π. Take a $(t-2)$-flat δ in Δ_0 and let $\Delta_1, \ldots, \Delta_4$ be the other $(t-1)$-flats through δ in Π. If all of $\Delta_1, \ldots, \Delta_4$ has a point of M_1, it follows from the induction hypothesis that $\varphi_1 \geq 6 \cdot 4^{t-3} \cdot 4 = 6 \cdot 4^{t-2}$. So, we assume that Δ_1 is a $(\theta_{t-2}, 0, 0)_{t-1}$ flat. Take a point $Q \in M_1 \cap \Pi$. We may assume that $Q \in \Delta_2$. Then, every line through Q in Π not contained in Δ_2 is a $(1,2,0)$-line. Hence, $\varphi_2 = x + 4^{t-1}$ with $x = |\Delta_2 \cap M_1|$. Take a $(1,2,0)$-line l through Q in Π and let Q' be another point of $l \cap M_1$. We may assume that $Q' \in \Delta_3$. Then, we have $\varphi_1 = y + 4^{t-1}$ with $y = |\Delta_3 \cap M_1|$. Hence, $x = y$. If Δ_4 contains no point of M_1, then, $x = 4^{t-2}$ and $\varphi_1 = 8 \cdot 4^{t-2}$. Assume that Δ_4 contains a point Q_1 of M_1. Then, we have $\varphi_1 = z + 4^{t-1}$ with $z = |\Delta_4 \cap M_1|$, whence $x = y = z$. It is easy to see that there is a $(1,2,0)$-line through Q_1 in Π meeting Δ_2 in a point $R \in M_3$. Counting the number of points in M_1 on the lines through R, we get $\varphi_1 = x + 2y$. Hence $x = y = z = 2 \cdot 4^{t-2}$ and $\varphi_1 = 6 \cdot 4^{t-2}$.

Lemma 2.8. Let Π be a $(\theta_{t-1}, 6 \cdot 4^{t-2}, 0)_t$ flat in Σ for $t \geq 2$. For any $(\theta_{t-2}, 0, 0)_{t-2}$ flat δ in Π, the $(t-1)$-flats through δ in Π are a $(\theta_{t-1}, 0, 0)_{t-1}$ flat, a $(\theta_{t-2}, 0, 0)_{t-1}$ flat and three $(\theta_{t-2}, 2 \cdot 4^{t-2}, 0)_{t-1}$ flats.
Proof We proceed by induction on t. See Table 3.2 in [12] for $t = 2$. Assume $t \geq 3$. Let Δ_0 be $\Pi \cap M_0$. Then, Δ_0 is a $(\theta_{t-1},0,0)_{t-1}$ flat. Take a $(\theta_{t-2},0,0)_{t-2}$ flat δ_0 in Δ_0 and let $\Delta_1, \ldots, \Delta_4$ be the other $(t-1)$-flats through δ_0 in Π. Suppose that none of $\Delta_1, \ldots, \Delta_4$ is a $(\theta_{t-2},0,0)_{t-1}$ flat in Σ. Since Δ_0 is a $(\theta_{t-1},0,0)_{t-1}$ flat, all of $\Delta_1, \ldots, \Delta_4$ must be $(\theta_{t-2},6 \cdot 4^{t-3},0)_{t-1}$ flats by Lemma 2.7. From the induction hypothesis, one can take a $(\theta_{t-3},0,0)_{t-2}$ flat δ_1 in Δ_1. Counting the number of points in M_1 on the $(t-1)$-flats through δ_1, we get $|\Pi \cap M_1| \geq 6 \cdot 4^{t-3} \cdot \theta_1 > 6 \cdot 4^{t-2}$, a contradiction. Hence, Π contains a $(\theta_{t-2},0,0)_{t-1}$ flat, say H, and $\delta = \Delta \cap H$ is a $(\theta_{t-2},0,0)_{t-2}$ flat. It follows from the investigation in the proof of Lemma 2.7 that the other $(t-1)$-flats through δ in Π are $(\theta_{t-2},2 \cdot 4^{t-2},0)_{t-1}$ flats.

Lemma 2.9. Let Π be a $(\theta_{t-2},4^{t-1},4^{t-1})_t$ flat in Σ for $t \geq 2$. Then, Π contains a $(\theta_{t-2},0,0)_{t-2}$ flat δ such that the $(t-1)$-flats through δ in Π are a $(\theta_{t-2},0,4^{t-1})_{t-1}$ flat, a $(\theta_{t-2},4^{t-1},0)_{t-1}$ flat and three $(\theta_{t-2},0,0)_{t-1}$ flats.

Proof Let Δ_0 be $\Pi \cap M_0$. Then, Δ_0 is a hyperplane of Π, and $\delta = \Delta_0 \cap M_0$ is a $(\theta_{t-2},0,0)_{t-2}$ flat by Lemmas 2.3 and 2.5. Let $\Delta_1, \ldots, \Delta_4$ be the other $(t-1)$-flat through δ in Π. We may assume that Δ_1 contains a point $R \in M_3$. Let Δ_1 be a $(\theta_{t-2},x,0)_{t-1}$ flat and let r_1 be the number of $(0,i,1)$-lines through R meeting Δ_1 in a point of M_2 for $i = 1,3$. Then, we have $r_1 + r_3 = 4^{t-1}$ and $x + r_1 + 3r_3 = 4^{t-1}$, whence $x = r_3 = 0$. Take a $(0,1,1)$-line in Π through R meeting $\Delta_2, \Delta_3, \Delta_4$ in $R_2, R_3 \in M_3$ and $Q \in M_1$, respectively. Then, one can deduce that Δ_2, Δ_3 are $(\theta_{t-2},0,0)_{t-1}$ flats and Δ_4 is a $(\theta_{t-2},4^{t-1},0)_{t-1}$ flat.

Lemma 2.10. Let Π be a $(\theta_{t-2},\varphi_1,4^{t-1})_t$ flat in Σ for $t \geq 2$. If Π contains a $(\theta_{t-2},0,0)_{t-1}$ flat, then $\varphi_1 \in \{4^{t-1},6 \cdot 4^{t-2},3 \cdot 4^{t-1}\}$.

Proof Let Δ_0 be $\Pi \cap M_0$. Then, Δ_0 is a hyperplane of Π, and $\delta = \Delta_0 \cap M_0$ is a $(\theta_{t-2},0,0)_{t-2}$ flat by Lemmas 2.3 and 2.5. Let $\Delta_1, \ldots, \Delta_4$ be the other $(t-1)$-flat through δ in Π. We may assume that Δ_1 is a $(\theta_{t-2},0,0)_{t-1}$ flat. We first assume that Δ_2 is a $(\theta_{t-2},4^{t-1},0)_{t-1}$ flat, i.e., $\Delta_2 \setminus \delta \subset M_1$. If $\Pi \cap M_1 \subset \Delta_2$, then we have $\varphi_1 = 4^{t-1}$. If there is a point $Q \in M_2 \setminus \Delta_2$, say $Q \in \Delta_3$, then the lines in Π through R not contained in Δ_2 are $(0,3,1)$-lines, whence $\varphi_1 = 3 \cdot 4^{t-1}$. Finally, assume that all of $\Delta_2, \Delta_3, \Delta_4$ contain a point of M_2. Let Δ_2 be a $(\theta_{t-2},x,0)_{t-1}$ flat and let R be a point of $\Delta_2 \cap M_2$. Then, the lines in Π through R not contained in Δ_2 are $(0,1,1)$-lines, whence $\varphi_1 = x + 4^{t-1}$. Similarly, each of Δ_3, Δ_4 contains x points of M_1. Hence, we obtain $3x = \varphi_1$, and $\varphi_1 = 6 \cdot 4^{t-2}$.

From the investigation of a $(\theta_{t-2},6 \cdot 4^{t-2},4^{t-1})_t$ flat in the proof of Lemma 2.10, we get the following.

Lemma 2.11. Let Π be a $(\theta_{t-2},6 \cdot 4^{t-2},4^{t-1})_t$ flat containing a $(\theta_{t-2},0,0)_{t-1}$ flat Δ_1 in Σ for $t \geq 2$. Then, Δ_1 contains a $(\theta_{t-2},0,0)_{t-2}$ flat δ such that
Lemma 2.13. A \((\theta_{t-2}, 6 \cdot 4^{t-2}, 4^{t-1})_t\) flat \(\Pi\) in \(\Sigma\) contains a \((\theta_{t-2}, 0, 0)_{t-1}\) flat and a \((\theta_{t-2}, 0, 4^{t-1})_{t-1}\) flat through a fixed \((\theta_{t-2}, 0, 0)_{t-2}\) flat for \(t \geq 2\).

Proof. Let \(\Delta_0 = \Pi \cap M_0\) be the \((\theta_{t-2}, 0, 4^{t-1})_{t-1}\) flat. Then, \(\delta_0 = \Delta_0 \cap M_0\) is a \((\theta_{t-2}, 0, 0)_{t-1}\) flat. Let \(\Delta_1, \ldots, \Delta_4\) be the other \((t-1)\)-flats through \(\delta_0\) in \(\Pi\). Suppose that \(\Pi\) contains no \((\theta_{t-2}, 0, 0)_{t-1}\) flat. Since \(|\Pi \cap M_1| = 6 \cdot 4^{t-2}\), we have \(|\Delta_i \cap M_1| = 6 \cdot 4^{t-3}\) for \(i = 1, 2, 3, 4\) by Lemma 2.7. From Lemma 2.8, \(\Delta_1\) contains a \((\theta_{t-3}, 0, 0)_{t-2}\) flat \(\delta_1\). Let \(\pi_1, \ldots, \pi_4\) be the other \((t-1)\)-flats in \(\Pi\) through \(\delta_1\). If \(|\pi_i \cap M_1| = 3 \cdot 4^{t-2}\), then it follows from Lemma 2.10 that

\[|\Pi \cap M_1| = |\Delta_1 \cap M_1| + \sum_{i=1}^4 |\pi_i \cap M_1| \geq 6 \cdot 4^{t-3} + 3 \cdot 4^{t-2} + 3 \cdot 4^{t-2} > 6 \cdot 4^{t-2},\]

a contradiction. Hence, \(|\pi_i \cap M_1| \neq 3 \cdot 4^{t-2}\) for \(i = 1, 2, 3, 4\), and we may assume that \(\pi_1\) is a \((\theta_{t-3}, 6 \cdot 4^{t-3}, 4^{t-2})_{t-1}\) flat and that \(\pi_2, \pi_3, \pi_4\) are \((\theta_{t-3}, 4^{t-2}, 4^{t-2})_{t-1}\) flat. Note that \(F_0 = \delta_1 \cap M_0\) is a \((\theta_{t-3}, 0, 0)_{t-3}\) flat and that the \((t-2)\)-flats in \(\pi_j\) through \(F_0\) are a \((\theta_{t-3}, 0, 4^{t-2})_{t-2}\) flat, a \((\theta_{t-3}, 4^{t-2}, 0)_{t-2}\) flat and three \((\theta_{t-3}, 0, 0)_{t-2}\) flats for \(j = 2, 3, 4\) by Lemma 2.9. Take a \((\theta_{t-3}, 0, 0)_{t-2}\) flat \(\delta_2\) through \(F_0\) in \(\Delta_2\) and a \((\theta_{t-3}, 0, 4^{t-2})_{t-2}\) flat \(\delta_3\) in \(\pi_1\). We may assume that \(\delta_2\) is contained in \(\Delta_2\). Let \(\Delta\) be the \((t-1)\)-flat \(\langle \delta_2, \delta_3 \rangle\) through \(F_0\). Then, the \((t-2)\)-flats in \(\Delta\) through \(F_0\) other than \(\delta_1, \delta_2\) are \((\theta_{t-3}, 2 \cdot 4^{t-3}, 0)_{t-2}\) flats each of which is contained in one of \(\Delta_1, \Delta_3, \Delta_4\). This contradicts that \(\Delta\) meets \(\pi_j\) in \((\theta_{t-3}, 4^{t-2}, 0)_{t-2}\) flat or \((\theta_{t-3}, 0, 0)_{t-2}\) flat for \(j = 2, 3\).

Proof of Theorem 1.3. Let \(C\) be an \([n, k, d]_4\) code with generator matrix \(G\) with 4-WS \((\theta_{k-3}, 6 \cdot 4^{k-3}, 4^{k-2}, 4^{k-1} - 6 \cdot 4^{k-3})\), \(k \geq 3\), \(d \equiv 1 \pmod{4}\). Then, there are a \((\theta_{k-3}, 0, 4^{k-2})_{k-2}\) flat \(H_1\) and a \((\theta_{k-3}, 0, 0)_{k-2}\) flat \(H_2\) through a fixed \((\theta_{k-3}, 0, 0)_{k-3}\) flat \(\delta\) by Lemma 2.12. Let \(\mathcal{C}\) be an extended \([n + 1, k, d + 1]_4\) code with generator matrix \(G\), which is given by adding the defining vector of \(H_1\) to \(G\) and let \(M_t = \{P \in \Sigma \mid w_G(P) \equiv i \pmod{q}\}\). Since \(w_G(P) = w_C(P)\) for \(P \in H_1\) and \(w_G(P) = w_C(P) + 1\) for \(P \not\in H_1, H_2\) is a \((\theta_{k-2}, 0, 0)_{k-2}\) flat for \(\mathcal{C}\). Hence, \(\mathcal{C}\) is 2-extendable by adding the defining vector of \(H_2\) twice to \(G\) by Lemma 2.6.

The following lemma is valid for a \([n, k, d]_4\) code with \(d \equiv 2 \pmod{4}\), which was originally proved for odd \(d\) in [12].

Lemma 2.13. For a plane \(\delta\), \(\delta \cap M_0\) is one of the following:

(a) a line;
(b) a non-singular Hermitian curve \(\mathcal{H}_2\);
(c) the union of three concurrent lines \(\Pi_0 \mathcal{H}_1\);
(d) the plane \(\delta\).
Recall that a line \(l \) of \(\Sigma \) with \(|l \cap M_e| = t \) is called a \(t \)-line. A \(t \)-plane, a \(t \)-solid and so on are defined similarly. The possible planes are 5-, 7-, 9-, 13- and 21-planes by Lemma 2.13.

Lemma 2.14. Let \(\Delta \) be a 53-solid, i.e., \(|\Delta \cap M_e| = 53 \). Then, \(\Delta \cap M_e \) consists of three planes through a fixed line.

Proof. From Table 2 in [14], \(\Delta \cap M_e \) is either \(\Pi_1 \mathcal{V}_1 \) or \(\mathcal{R}_3 \). Since \(\mathcal{R}_3 \) contains a 11-plane, \(\Delta \cap M_e \) is \(\Pi_1 \mathcal{V}_1 \) by Lemma 2.13.

Lemma 2.15. Let \(C \) be an \([n, k, d]_4\) code with \(w_0 + w_2 = \theta_{k-2} + 2 \cdot 4^{k-2} \), \(k \geq 3 \), \(d \not\equiv 0 \pmod{4} \). Then the \((w_0 + w_2)\)-set \(M_e = M_0 \cup M_2 \) consists of three hyperplanes \(H_0, H_1, H_2 \) of \(\Sigma \) through a fixed \((k - 3)\)-flat.

Proof. Let \(\Pi \) be a \(t \)-flat in \(\Sigma \) with \(|\Pi \cap M_e| = \theta_{t-1} + 2 \cdot 4^{t-1} \). We shall prove that \(\Pi \cap M_e \) consists of three \((t - 1)\)-flats through a fixed \((t - 2)\)-flat. Our assertion holds for \(t = 2, 3 \) by Lemmas 2.13 and 2.14. Since a line meets \(M_e \) in some odd number of points, one can take a 3-line \(l \) in \(\Pi \). Counting the number of points of \(M_e \) on the planes in \(\Pi \) through \(l \), the equality \((13 - 3)\theta_{t-2} + 3 = \theta_{t-1} + 2 \cdot 4^{t-1} \) implies that all of the planes in \(\Pi \) through \(l \) are 13-planes. Take such two planes \(\delta_1, \delta_2 \) and let \(P_i \) be the vertex of the cone \(\delta_i \cap M_e \), \(i = 1, 2 \). Then, \(\Delta = \langle \delta_1, \delta_2 \rangle \) is a 53-solid with \(\Delta \cap M_e = \Pi_1 \mathcal{V}_1 \). Hence, the line \(\langle P_1, P_2 \rangle \) is contained in \(M_e \).

Let \(S \) be the set of vertices of the cones \(\delta \cap M_e \) for all planes \(\delta \) in \(\Pi \) through \(l \). Then, \(S \) is a \((t - 2)\)-flat. Let \(Q_1, Q_2, Q_3 \) be the points in \(l \cap M_e \). Since \(\langle Q_i, Q \rangle \) is a line contained in \(M_e \) for any \(Q \in S \), \(\langle Q, S \rangle \) is a \((t - 2)\)-flat contained in \(M_e \).

Taking the defining vectors of \(H_0, H_1, H_2 \) as \(a_0, a_1, a_2 \), Theorem 1.4 follows from Lemma 2.15. Furthermore, Theorem 1.5 (a) follows from the following lemma since the condition \(\mu_0 + \mu_1 + \mu_2 = w_2 \) holds if and only if the \((k - 3)\)-flat \(H_0 \cap H_1 \cap H_2 \) is contained in \(M_0 \).

Lemma 2.16 ([5]). Let \(C \) be an \([n, k, d]_4\) code with generator matrix \(G \), \(k \geq 3 \), \(d \equiv 1 \pmod{4} \). If \(M_e \) contains three distinct hyperplanes \(H_1, H_2, H_3 \) of \(\Sigma \) through a \((k - 3)\)-flat \(\Delta \) with \(\Delta \subset M_0 \), then \(C \) is 3-extendable by adding the defining vectors of \(H_1, H_2, H_3 \) to \(G \).

Theorem 1.5 (c) is obvious. Theorem 1.5 (b) follows from the following.

Lemma 2.17 ([5]). Let \(C \) be an \([n, k, d]_4\) code with generator matrix \(G \), \(k \geq 3 \), \(d \equiv 2 \pmod{4} \). If \(M_0 \cup M_1 \cup M_3 \) contains two distinct hyperplanes \(H_1, H_2 \) of \(\Sigma \) meeting in a \((k - 3)\)-flat \(\Delta \) with \(\Delta \subset M_0 \cup M_1 \), then \(C \) is 2-extendable by adding the defining vectors of \(H_1, H_2 \) to \(G \).

An alternative method to investigate the \(l \)-extendability of an \([n, k, d]_q\) code \(C \) such that \(A_i > 0 \) implies \(i \equiv 0, -1, \ldots, -s \pmod{q} \), where \(d \equiv -s \) with \(1 \leq s \leq q - 1 \) is to consider the multiset \(\mathcal{M} = \sum_{i=0}^{s-1} (s - i) \cdot M_i \) consisting of \((s - i)\) copies of \(M_i \) for \(i = 0, 1, \ldots, s - 1 \). In this method, \(C \) is \(l \)-extendable if
and only if \(M \) contains the sum of \(l \) hyperplanes of \(\Sigma \) [6]. The Lemmas 2.6, 2.16, 2.17 can be easily obtained from this approach.

Now, we can look at the extendability of codes in Examples 1.6-1.9 from our geometrical point of view as follows.

Example 2.18. Let \(C_1 \) be the \([14,3,9]_4\) code with 4-WS (3,8,2,8) in Example 1.6. Then, \(M_e = M_0 \cup M_2 \) forms a \((3,0,2,2)\)-line whose defining vector is \((1,0,2) \) in \(\Sigma = \text{PG}(2,4) \). Let \(G_1 \) be the \(3 \times 15 \) matrix given by adding the column \((1,0,2)^T\) to \(G_1 \). Then, \(G_1 \) generates a \([15,3,10]_4\) code \(\tilde{C}_1 \) with weight distribution \(0^4 \cdot 10^{24} \cdot 12^{18} \cdot 14^6 \) giving 4-WS \((11,0,10,0)\). The 11-set \(M_0 \) for \(\tilde{C}_1 \) contains a \((5,0,0)\)-line with defining vector \((1,1,2)\). Hence, \(\tilde{C}_1 \) is 2-extendable by adding the column \((1,1,2)^T\) to \(G_1 \) twice.

Example 2.19. Let \(C_2 \) be the \([27,5,17]_4\) code with 4-WS (21,192,64,64) in Example 1.7. Then, \(M_e \) forms a hyperplane in \(\Sigma = \text{PG}(4,4) \), whose defining vector is \((1,1,2,0,3)\). Let \(G_2 \) be the \(5 \times 28 \) matrix given by adding the column \((1,1,2,0,3)^T\) to \(G_2 \). Then, \(G_2 \) generates a \([28,5,18]_4\) code \(\tilde{C}_2 \) with weight distribution \(0^{18} \cdot 12^{20} \cdot 18^{30} \cdot 24^{62} \cdot 26^{54} \cdot 28^3 \) giving 4-WS \((85,0,256,0)\). The 85-set \(M_0 \) for \(\tilde{C}_2 \) forms a hyperplane with defining vector \((1,2,0,1,0)\). Hence, \(\tilde{C}_2 \) is 2-extendable by adding the column \((1,2,0,1,0)^T\) to \(G_2 \) twice.

Example 2.20. Let \(C_3 \) be the \([22,4,9]_4\) code with 4-WS (5,24,16,40) in Example 1.8. Then, \(M_e = M_0 \cup M_2 \) forms a plane, say \(\delta \), whose defining vector is \((1,0,1,3)\) in \(\Sigma = \text{PG}(3,4) \). Let \(G_3 \) be the \(4 \times 23 \) matrix given by adding the column \((1,0,1,3)^T\) to \(G_3 \). Then, \(G_3 \) generates a \([23,4,10]_4\) code \(\tilde{C}_3 \) with weight distribution \(0^{10} \cdot 12^{3} \cdot 14^{18} \cdot 16^{4} \cdot 18^{9} \cdot 20^{5} \). Hence, we have \((w_0, w_2) = (45,40)\) for \(\tilde{C}_3 \). The 45-set \(M_0 \) for \(\tilde{C}_3 \) forms an odd set of type \(\Pi_0 \) in \([14]\) containing a plane with defining vector \((0,1,1,1)\). Hence, \(\tilde{C}_3 \) is 2-extendable by adding the column \((0,1,1,1)^T\) to \(G_3 \) twice.

Example 2.21. Let \(C_4 \) be the \([24,3,17]_4\) code with 4-WS (5,6,8,2) in Example 1.9. Then, \(M_e \) consists of three lines through a fixed point in \(\Sigma = \text{PG}(2,4) \): \((3,0,2)\)-lines \(\ell_0, \ell_1 \) and a \((1,0,4)\)-line \(\ell_2 \) with defining vectors \(a_0 = (1,0,1), a_1 = (1,0,2), a_2 = (1,0,3) \), respectively. Since \(\mu_0 + \mu_1 + \mu_2 = \sum_{i=0}^{2} |\ell_i \cap M_2| = w_2 \), the point \(\ell_0 \cap \ell_1 \cap \ell_2 \) belongs to \(M_0 \). Hence, \(\tilde{C}_4 \) is 3-extendable by adding \(a_0, a_1, a_2 \) to \(G_4 \) as columns by Lemma 2.16.

References

